martes, 5 de junio de 2012

Regla de Simpson

Marco Teorico



La fórmula fue utilizada por primera vez por Evangelista Torricelli, pero debe su nombre al matemático Inglés Thomas Simpson. Corresponde a la regla del tonel que Johannes Kepler ya había formulado en 1615.

Sobre la historia de su surgimiento, Kepler informa en la dedicatoria de su publicación posterior: Después de que la primera esposa de Kepler había muerto en Praga en 1611, Kepler se casó nuevamente - en Linz, donde ahora trabajaba - en 1613. Para la boda compró algunos toneles de vino. Puesto ya el vino en la bodega, el vendedor concurrió con una vara de medir y determinó el contenido para todos los barriles sin pensar o calcular, utilizando un mismo método, consistente en que introducía la punta de metal de la vara de medir a través de la piquera , en diagonal hacia los bordes de ambos fondos y la marca en la piquera arrojaba la medida del volumen del contenido. Kepler se sorprendió con aquello de que una diagonal a través del medio del barril pudiera dar una medida sobre el volumen contenido y puso en duda la exactitud de este método, debido a que, por ejemplo, un barril muy bajo que tuviera una base algo más ancha y por eso un volumen contenido mucho menor podría tener el mismo radio a la vista.

A raíz de esto, Kepler formuló en 1615 el escrito Nova Stereometria doliorum vinariorum (Nuevo cálculo del contenido de barriles de vino), en el que buscaba métodos verificables para el cálculo del contenido de los toneles de vino. Uno de estos métodos consistió en aproximar la curvatura del barril por una parábola, dado que los cálculos con ayuda de parábolas ya se podían realizar muy exactamente desde Arquímedes.

Entre otras cosas, Kepler describió en este texto una fórmula para el cálculo de la capacidad (más precisamente, del volumen) de barriles de vino con formas irregulares. Esta fórmula arroja valores exactos para el tronco de la pirámide (incluida la pirámide), la esfera, el paraboloide elíptico, el hiperboloide de una hoja y todas las demás superficies de un cuerpo que pueden ser generadas por secciones planas perpendiculares al eje del cuerpo.


Video Metodo simpson 1/3: 

el cual sirve para tener una aproximacion mas exacta.


Ejercicios




Graficas




domingo, 29 de abril de 2012

Integracion por partes

El método de integración por partes se basa en la derivada de un producto y se utiliza para resolver algunas integrales de productos.

Tenemos que derivar u e integrar v', por lo que será conveniente que la integral de v' sea inmediata.
Las funciones polinómicas, logarítmicas y arcotangente se eligen como u.
Las funciones exponenciales y trígonométricas del tipo seno y coseno, se eligen como v'.

Ejemplo:








Un Video tutorial Para la Integracion por partes



Un link para resolver integrales paso a paso








Solidos en revolucion

f(x)=x

f(x)=x^2



f(x)=(2x)+2x
f(x)=x+2





f(x)=sin(3x)
f(x)=x^2-2




sábado, 10 de marzo de 2012

Teorema Fundamental Del Calculo

El teorema fundamental del cálculo consiste (intuitivamente) en la afirmación de que la derivación e integración de una función son operaciones inversas. Esto significa que toda función continua integrable verifica que la derivada de su integral es igual a ella misma. Este teorema es central en la rama de las matemáticas denominada análisis matemático o cálculo.


La derivada de la función integral de la función continua f(x) es la propia f(x).
F'(x) = f(x)
El teorema fundamental del cálculo nos indica que la derivación y la integración son operaciones inversas: si una función continua primero se integra y luego se deriva, se recupera la función original.
A continuación dos videos donde se explica mejor el teorema a aplicar:



Parte 2:



el link de abajo contiene un applet para tabajar integrales con su grafica elaborado en java. 

http://www.mat.uson.mx/eduardo/calculo2/Integral/Ejercicios/IntegralGENERAL.htm